
Designing Various CPU Scheduling Techniques
using SCILAB

Mona Saini

Department of Computer Science and Engineering

Krishna Institute of Engineering and Technology, Ghaziabad

1.ABSTRACT

Operating system's performance and throughput are highly
affected by CPU scheduling. CPU Scheduling is the basis of
multi-programmed operating system. The most important
aspect of this paper is to represent scheduling algorithms in
SCILAB language. Scilab is an open source, cross-
platform numerical computational package and a high-level,
numerically oriented programming language.
There are many scheduling algorithms available for a multi-
programmed operating system. In this paper we are
representing following scheduling algorithm, programmed
using SCILAB. FCFS, SJFS, Round-Robin and deadlock
bankers algorithm.

Keywords: CPU Scheduling, SCILAB, CPU Utilization,
Throughput, Waiting Time, Response Time, Priority, SCFS,
FJFS, Round Robin.

2. INTRODUCTION
 In a single-processor system, only one process can run at a
time; any others must wait until the CPU is free and can be
rescheduled. The objective of multiprogramming is to have
some process running at all times, to maximize CPU
utilization [1]. Scheduling is a fundamental operating-
system function. Almost all computer resources are
scheduled before use. The CPU is, of course, one of the
primary computer resources.
 multiprogramming operating system allows more than one
process to be loaded into the executable memory at a time
and for the loaded process to share the CPU using time-
multiplexing. Part of the reason for using
multiprogramming is that the operating system itself is
implemented as one or more processes, so there must be a
way for the operating system and application processes to
share the CPU.
In this project we are using SCILAB for designing
scheduling techniques because it is a open source, cross
platform computational, high-level, numerically
oriented programming language. The language provides
an interpreted programming environment, with matrices as
the main data type. By utilizing matrix-based
computation, dynamic typing, and automatic memory
management, many numerical problems may be expressed
in a reduced number of code lines, as compared to similar
solutions using traditional languages, such as Fortran, C,
or C++. This allows users to rapidly construct models for a
range of mathematical problems. While the language
provides simple matrix operations such as multiplication,
the Scilab package also provides a library of high-level

operations such ascorrelation and complex
multidimensional arithmetic. The software can be used
for signal processing, statistical analysis, image
enhancement, fluid dynamics simulations, and numerical
optimization.

3. GOALS FOR SCHEDULING:
A CPU Scheduling scheme should be quick enough and
satisfy following criteria.

3.1 CPU Utilization: It is the average fraction of time,

during which the processor is busy It should keeps the
CPU busy 100% of the time with useful work.

3.2 Throughput: It refers to the amount of work completed
in a unit of time. The number of processes the system
can execute in a period of time. It should maximizes
the number of jobs processed per hour.

3.3 Waiting Time: The average period of time a process
spends waiting. Waiting time may be expressed as
turnaround time less the actual execution time For
good scheduling technique, it should be as minimum as
possible.

3.4 Turnaround time: The interval from the time of
submission of a process to the time of completion is
the turnaround time It should be minimum.

3.5 Response time: A scheduling technique is said to be
good if its response time is quick. Response time is
the time from submission of a request until the first
response is produced

3.6 Priority: give preferential treatment to processes with
higher priorities

3.7 Fairness: The primary function of any scheduling
strategy is to make sure each process

4. VARIOUS SCHEDULING ALGORITHMS
CPU scheduling deals with the problem of deciding which
of the processes in the ready queue is to be allocated the
CPU.

4.1 First In First Serve Scheduling (FCFS): Just a FIFO
queue, like customers waiting in line at the bank or the post
office or at a copying machine. Dispatcher selects first job
in queue and this job runs to completion of CPU burst. The
advantages of FCFS is that it is simple and has low
overhead. And has disadvantages of inappropriate for
interactive systems and large fluctuations in average
turnaround time are possible.

Mona Saini / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (3) , 2014, 2918-2923

www.ijcsit.com 2918

Process Burst Time

P1 24

P2 3

P3 3

Figure-1 Process parameters and grant chart for FCFS.
In the first Gantt chart, process P1 arrives first. The average
waiting time for the three processes is (0 + 24 +27) / 3 =
17.0 ms.

 4.2 Shortest Job First Scheduling(SJFS) : The idea
behind the SJF algorithm is to pick the quickest fastest little
job that needs to be done, get it out of the way first, and
then pick the next smallest fastest job to do next. arriving
jobs inserted at proper position in queue, dispatcher selects
shortest job (1st in queue) and runs to completion. Its
advantage is that it is provably optimal from
turnaround/waiting point of view. The disadvantages of SJF
are that in general, it cannot be implemented, also
starvation is possible, Can do it approximately: use
exponential averaging to predict length of next CPU burst

Process Burst Time

P1 6

P2 8

P3 7

P4 3

Figure-2: Process parameters and grant chart for SJFS.
In the case above the average wait time is (0 + 3 + 9 + 16)
/ 4 = 7.0 ms, (as opposed to 10.25 ms for FCFS for the
same processes.)

4.3 Priority Scheduling: Priority scheduling is a more
general case of SJF, in which each job is assigned a priority
and the job with the highest priority gets scheduled first.
(SJF uses the inverse of the next expected burst time as its
priority - The smaller the expected burst, the higher the
priority.) Priorities can be assigned either internally or
externally. Internal priorities are assigned by the OS using
criteria such as average burst time, ratio of CPU to I/O
activity, system resource use, and other factors available to
the kernel. External priorities are assigned by users, based
on the importance of the job, fees paid, politics, etc.

Process Burst Time Priority

P1 10 3

P2 1 1

P3 2 4

P4 1 5

P5 5 2

Figure-3: Process parameters and grant chart for

Parity Scheduling.

The following Gantt chart is based upon these process burst
times and priorities, and yields an average waiting time of
8.2 ms.

4.4 Round Robin Scheduling: Round robin scheduling is
similar to FCFS scheduling, except that CPU bursts are
assigned with limits called time quantum. treat ready
queue as circular, arriving jobs are placed at the end,
dispatcher selects first job in queue and runs until
completion of CPU burst, or until time quantum expires if
quantum expires, job is again placed at end. The
advantages of Round Robin are that it is simple, low
overhead, works for interactive systems and has the
following disadvantages if quantum is too small, there will
be too much time wasted in context switching and if too
large (i.e., longer than mean CPU burst), it approaches
FCFS.

4.5 Banker’s Algorithm (Deadlock Detection): In
an operating system, a deadlock is a situation which occurs
when a process or thread enters a waiting state because
a resource requested by it is being held by another waiting
process, which in turn is waiting for another resource. If a
process is unable to change its state indefinitely because the
resources requested by it are being used by another waiting
process, then the system is said to be in a deadlock.
The Banker's algorithm is run by the operating system
whenever a process requests resources. The
algorithm avoids deadlock by denying or postponing the
request if it determines that accepting the request could put
the system in an unsafe state (one where deadlock could
occur). When a new process enters a system, it must
declare the maximum number of instances of each resource
type that may not exceed the total number of resources in
the system. Also, when a process gets all its requested
resources it must return them in a finite amount of time.

5. CODING:
This coding helps to implement all these algorithms in one
frame and every button have inbuilt coding for a particular
algorithm.

Mona Saini / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (3) , 2014, 2918-2923

www.ijcsit.com 2919

function Schedule()

 defaultfont = "arial";
 font_size = 12;

 // Figure creation
 //
===================================
===================================
===
 axes_w = 450;
 axes_h = 250;

 Schedule = scf(100001);

 // Remove Scilab graphics menus & toolbar
 delmenu(Schedule.figure_id, gettext("&File"));
 delmenu(Schedule.figure_id, gettext("&Tools"));
 delmenu(Schedule.figure_id, gettext("&Edit"));
 delmenu(Schedule.figure_id, gettext("&?"));
 toolbar(Schedule.figure_id, "off");

 Schedule.background = -2;
 Schedule.color_map = jetcolormap(128);
 Schedule.figure_position = [300 100];
 Schedule.figure_name = gettext("Scheduling");

 // New menu
 h = uimenu("parent",Schedule, "label",gettext("File"));
 uimenu("parent",h, "label",gettext("Close"),
"callback","Schedule=get_figure_handle(100001);delete(Sc
hedule);", "tag","close_menu");

 sleep(500);
 Schedule.axes_size = [axes_w axes_h];

button1 = uicontrol("parent",Schedule,
"style","pushbutton", "fontsize",13, "string","FCFS",
"units","pixels", "position",[65 200 300 35],
"callback","FCFS();", "tag","FCFS");
button1 = uicontrol("parent",Schedule,
"style","pushbutton", "fontsize",13, "string","SJFS",
"units","pixels", "position",[65 150 300 35],
"callback","SJFS();", "tag","SJFS");
button1 = uicontrol("parent",Schedule,
"style","pushbutton", "fontsize",13, "string","PRIORITY",
"units","pixels", "position",[65 100 300 35],
"callback","PRIORITY();", "tag","PRIORITY");
button1 = uicontrol("parent",Schedule,
"style","pushbutton", "fontsize",13,
"string","ROUNDROBIN", "units","pixels", "position",[65
50 300 35], "callback","ROUNDROBIN();",
"tag","ROUNDROBIN");
button1 = uicontrol("parent",Schedule,
"style","pushbutton", "fontsize",13, "string","BANKERS",
"units","pixels", "position",[65 0 300 35],
"callback","BANKERS();", "tag","BANKERS");

endfunction

5.1 Output for above coding:

On Clicking at any of the scheduling technique, function
corresponding to it is called. For example if we click of
FCFS then following function will be initiated in SCILAB
Interface.

5.2 First Come First Serve:

function FCFS()

n=input("Enter the no. of process :")
disp(" enter the burst time of process :")
for i=1:n
 disp(i,"Process")
 b(i)=input(" ")
 a(i)=i
 end
w(1)=0
avg=0
disp(w(1),a(1),"process waiting time:")
for i= 2:n
w(i)=b(i-1)+w(i-1)
disp(w(i),a(i),"Process waiting time")
avg=avg+w(i)
end
disp(avg,"total waiting time")
disp(avg/n,"total avg waiting time is")
tat(1)=b(1)
avg1=b(1)
disp(tat(1),a(1),"process turn around time:")
for k= 2:n
tat(k)=tat(k-1)+b(k)
disp(tat(k),a(k),"Process Turn around time:")
avg1=avg1+tat(k)
end
disp(avg1,"Total turn around time: ")
disp(avg1/n,"Total avg turn around time is; ")
exec('C:\Users\Lovepreet\Desktop\mona saini prjct\new
prg\fcfs.sci', -1)
 endfunction

Mona Saini / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (3) , 2014, 2918-2923

www.ijcsit.com 2920

FCFS OUTPUT:
On clicking on FCFS the output is:

5.3 Shortest Job First Scheduling:

Mona Saini / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (3) , 2014, 2918-2923

www.ijcsit.com 2921

5.4 PARITY SCHEDULING:

Mona Saini / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (3) , 2014, 2918-2923

www.ijcsit.com 2922

6. CONCLUSION AND FUTURE WORK:
The treatment of shortest process in SJF scheduling tends
to result in increased waiting time for long processes. And
the long process will never get served, though it produces
minimum average waiting time and average turnaround
time. It is recommended that any kind of simulation for any
CPU scheduling algorithm has limited accuracy. The only
way to evaluate a scheduling algorithm to code it and has to
put it in the operating system, only then a proper working
capability of the algorithm can be measured in real time
systems. This paper describes non-primitive scheduling and
our future work is to work on primitive scheme of CPU
scheduling in Scilab.

REFRENCES:
Neetu Goel, R.B. Garg| A Comparative Study of CPU Scheduling

Algorithms, International Journal of Graphics & Image
Processing |Vol 2|issue 4|November 2012

M. Spuri and G. Buttazzo. Efficient aperiodic service under earliest
deadline scheduling. In IEEE Real-Time Systems Symposium,
December 1994.

Z. Deng, J. W. S. Liu, and J. Sun. A scheme for scheduling hard real-time
applications in open system environment,1997.

J. Banks, J. S. Carson J.S., Nelson B. L., Nicol D.M., (2005). Discrete-
Event System Simulation Fourth Edition.

M. Cosnard and M. Loi. Automatic Task Graph GenerationTechniques.
Parallel Processing Letters, 5(4):527–538,1995.

http://en.wikipedia.org./wiki/scheduling.
Silberchatz, Galvin and Gagne, 2003. Operating systems concepts.
D.M. Dhamdhere operating Systems A Concept Based Approach, Second

edition, Tata McGraw-Hill, 2006.
Y. Zhang and R. West. Process-aware interrupt scheduling and

accounting. In Proceedings of the 27th IEEE Real Time Systems
Symposium, December 2006.

Mona Saini / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (3) , 2014, 2918-2923

www.ijcsit.com 2923

